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APPENDIX 

S11 = b2c2 sin2 ct, 

$22 =c2a 2 sin 2 fl,  

$33 = a2b 2 sin 2 7,  

S12 = abc2(cos cz cos f l - c o s  )'), 

$23 =a2bc(cos fl cos ) , - c o s  ~x), 

$13 =ab2c(cos )' cos c~-cos fl), 

VE=a2bEc2(1-cos 2 c~-cos 2 fl 

- -COS 2 )' + 2 cos ~ cos fl cos )'), 

M2 1 1 
- d2qr - V 2 (Sllp2+S22q 2 

+ S33 r2 + 2S12pq + 2S23qr + 2S31pr). 
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Solving Structures with Quartets: The Least-Squares Analysis of Quartet Invariants in Space 
Group P 1 
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A least-squares technique for extracting individual phase angles from a set of quartet invariants is 
described. For symmorphic space groups, this procedure offers the advantages of stability and, in non- 
centrosymmetric cases, a systematic way of defining the enantiomorph, in contrast with traditional direct 
methods employing triplets. The application to a phthalic anhydride derivative C26H1605 in space group 
P1 is described. The method is readily extended to other space groups. 

1. In~oducfion 

Crystal  structures in space group P1 are t radi t ional ly 
the most  difficult to solve by direct methods.  The 
symmorphic  nature  of the space group tends to make 
the process ill-conditioned, and the lack of equivalent 
reflexions gives rise to a paucity of sign relations of low 

associated variance. This forces the need for a relatively 
large start ing set which, in turn, implies a large 
number  of possible solutions from which the correct 
phase set may be difficult to extract. Enan t iomorph  
definition is often a haphazard  affair, since it is difficult 
to predict accurately those invariants with magni tudes  
sufficiently far from 0 or n. 
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Recent formulae derived by Hauptman (1975, 1976) 
and Giacovazzo (1976a) for estimating quartet invari- 
ants in space group P1 offer certain advantages over 
the conventional distribution for triple-phase invari- 
ants. In P1, quartets are structure invariants of the 
form: 

(~) = 0Dh Jr- (~k -t- (pl -+- (pm (1.1) 

where" 
h + k + l + m = 0  (1.2) 

P({) 

and ~0h, ~Ok, ¢p~, and q~m are the phase angles associated 
with the normalized structure factors Eh, Eu, EI, Em. 
Each quartet has an associated variable 

B =  3o.2 - -  O . 2 O . 4  [EhEkE|Em[ (1.3) 

where 
N 

o.S = Z zi. (1.4) 
i= I  

There are N atoms in the unit cell with atomic number 
zi. The Pt  F formula (Hauptman, 1976) estimates • as 
a function of the four principal E magnitudes [Eh[, IEk[, 
[Eli and [Era[ (RI,R2,R3, R4 respectively) plus the three 
unique cross-terms ]gh+k[, [gk+l], [El+hi (R12,R23,R31 
respectively). The formula is couched in terms of the 
conditional joint probability distribution 

P(crpIR1,R2,R3,R4,R t2,R23,R 3 x) 
{'2o.3o ,1 ) 

"~ - M  1 exp ( -  2B c°s ~)I° ~,~2-~/2 "" 12" 12 

/ / 2 0 " 3 o  v (2o.30 v xlo~2/2,,,23,23)Io~2/z,,ax,31 ) (1.5) 

where: 
2 2 2 2 I112 =(R1R2 +R3R4+2R1R2R3R4 cos ~)1/2 (1.6) 
2 2 2 2 y23=(R2R3+RxR4+2R1RzRaR4co s ~)a/z (1.7) 

Y3t =(R3R12 2+R2R4+2R1RzR3R 4 2  z cos qi)l/2. (1.8) 

M is a normalizing constant. The distribution is defined 
in terms of cos • and is therefore unique only in the 
range 0 - n .  Put another way, only the magnitude of 
the quartet invariant is available and not the sign. 
Fig. 1 shows the distribution (1.5) when both principal 
and cross-terms are large; in this case • has a modal 
value of zero. For large principal terms and small 
cross-terms • has a most probable value of n (Fig. 2). 
The availability of quartets with probable values of n 
(negative quartets) alleviates the symmorphic nature 
of the phase problem in space group P1. A final case of 
large principal terms and medium-sized cross-terms 
is shown in Fig. 3. Here • has a magnitude of approx- 
imately re~2 and this quartet can be used as a possible 
enantiomorph definer. All three distributions are 
derived from the crystal structure analysis described in 

MODE 
MEDIAN 

MEAN 

R 1 = 2-90 
R 2 = 2" 62 
R 3 = 1"95 
R4 : 1-B9 
R12 = 2.21 

0 45 90 135 180 {° 

Fig. 1. The distribution (1.5) for the E magnitudes shown. The 
standard deviation of the mean is 17 °. 

MODE 
MEDIAN 

MEAN 

.1:2.90 II 
R 2 = 2-71 
R 3 = 2.32 
R4 = 1.89 

p(~) R12 = 0.32 
R23 = 0.42 
R31 = 0"40 

/ 
0 4'5 9b 1:~5 II~0 {' 

Fig. 2. The distribution (1.5) for the E magnitudes shown. The 
standard deviation of the mean is 21 °. 

MODE 

P({) R2= 2.71 I I I  k 

i R4= 2-24 '11 
I R12= 1-57 II 
I R23 o.9o II 
I R31-1.59 I1 

0 4'5 90 135 le,0 }° 
Fig. 3. The distribution (1.5) for the E magnitudes shown. The 

standard deviation of the mean is 39 ° . 
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§ 4. The examples quoted are unimodal, and experience 
would indicate that this is always the case. 

For a given set of conditions there is usually an order 
of magnitude more quartets than triplets, so that there 
is no longer a paucity of phase relations. 

2. Statistical parameters derivable from the conditional 
joint probability distribution 

As with other conditional joint probability distribu- 
tions several measures of central tendency are avail- 
able. (a) The mode [q~lm, which is the most probable 4, 
magnitude. (b) The mean, <1451>, derived from 

<1¢,1>= ~P(C, )d¢ ,  (2.1) 
0 

where P(~b) is an abbreviation of the left hand of (1.5). 
(c) The median, 14%a, which for conditions of small 
skewness of the distribution is derived as 

I'~lma = <[~l>-  1/3(<1~1> -I~lr,,) • (2.2) 

These parameters are independent of M. However, it 
is necessary to have a measure of the variance of the 
mean (V) and its associated standard deviation (a) for 
which M is needed. Hauptman (1975) has derived an 
analytic expression for M, but it is computationally 
simpler to derive it numerically such that 

f "P(~ld4, = 1. (2.3) 
0 

V is then: 

V =  (q , -  <14~l>)2P(~)dq, (2.4) 
0 

and 
a = V 112 (2.5) 

All these parameters are readily derived by numeri- 
cal integration on any modern computer and require 
only small amounts of central-processor time. 

phase angle q0h may be determined by minimizing the 
function 

1[]= ~ (.l)j[COS (q)h Jl-(PkjJi-q)ljJi-(~m])--¢]]2/ 2 (1.)j (3.4) 
3 3 

where o9~ is a weight associated with each quartet. In 
practice it is set to the inverse of the variance derived 
from (2.4). (3.4) offers an alternative to the standard 
triple-phase determining formulae used in most direct- 
methods procedures although the right hand of (3.4) 
need not consist of quartets exclusively but any invari- 
ant or seminvariant for which a cosine estimate is 
available. Thus triple-phase invariants with large 
associated A values can also be included with cosine 
values of 1.0 or with cosines estimated by the T P R O D  
or MDKS formulae (Hauptman, 1972). 

As with all phase-determining procedures, a measure 
of the reliability with which qgh is determined is re- 
quired. A simple measure is the depth of the minimum 
of qJ: 

d : I/tmax - -  I~tmi n . (3 .5)  

The maximum value of d is 4-0. However, this takes no 
account of the number of contributors, n, to the mini- 
mum; by trial this seems best included with d to give a 
modified figure of merit of the form dn ~/2. A further 
complication arises in early stages of phase determina- 
tion when only single invariants are being used to 
derive new phase angles. The best-determined phases 
should come from those invariants with the lowest 
associated standard deviations. We therefore append 
to the modified figure of merit, the weight, O,)max, as- 
sociated with the most reliable invariant used to gen- 
erate the phase angle q~h, to obtain the function 

Rh =fOmaxdn 1/2. (3.6) 

High values of R h a r e  associated with those phase 
angles which have been reliably determined. Typically, 
Rh is greater than 0"01 for such phases. 

3. The least-squares analysis of quartet invariants 

The problem now arises as to how best to utilize this 
information in a phase-determining procedure. Since 
the problem of deriving the individual phase angles 
from the quartet invariants is greatly overdetermined, 
and since only • magnitudes are available, a least- 
squares procedure similar to that described by Haupt- 
man (1972) suggests itself. 

If a series of cosine invariants of the form: 

COS ((/Oh "~- (Pkl @ (/011 "~- q)ml)  ~ C1 (3.1) 

COS (q)h Jr- (Pk2 + q)12 "~- q)m2) ~" C2 (3.2) 
cos (~Ph + q~k, + ¢P~, + q~n~,) -- C, (3.3) 

is available in which the coefficients cl, c2,..., c. and the 
phase angles q~kX, q~k2, ..., qhx, qh2, ..., (Pm~, ~P.,2, • -- are all 
known, at least approximately, then the common 

1t2. 
9'0" &" i;o" 2 s" 2 o" 

~273 (IE2731=2"21) 
Fig. 4. The  variat ion of  ~, (3-4) as a function of (P27~-. There  are eight 

contr ibutors ,  d = 4.0, o~max = 0"0027, Rh = 0"03, IE2771 = 2"21. 
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Fig. 4 shows the behaviour of ~ for a well-deter- 
mined phase having an associated value of Rh = 0"03. 
In contrast, Fig. 5 shows a poorly defined minimum in 

with an associated value of Rh = 0"004. 
Multiple minima in ~ occurring at values of q)h 

sufficiently removed from 0 or n may be used for enan- 
tiomorph definition. 

4. Application to the solution of the crystal structure of 
6-acetoxy-7,9-diphenylcyclohepta[c,d]isobenzofuran- 

2,8-dione 

C 2 6 H 1 6 0  5 is a phthalic anhydride derivative which 
crystallizes in space group P1 with Z =  1 (Freer, Gil- 
more, Mant & McCormick, 1977). Numerous attempts 
to solve this structure with vector search techniques 
and conventional direct methods were unsuccessful. 

Normalized structure factors were calculated in- 
corporating the molecular scattering factor for benzene 
(Main, 1976), and 8668 quartets with B>0.9 were esti- 
mated from (1.5), for 231 E magnitudes > 1-57. For 
each quartet the magnitudes of the mean, mode and 
median were computed with the associated variance 
and standard deviation. This procedure used ca 5 min 
of c.p.u, time on an IBM 370/168 computer. The 4000 
quartets with the lowest variance were input into the 
least-squares program.* Three reflexions, 171, 17.1 and 
196, were used to fix the origin. For a satisfactory 
phasing path two further phases were required, and 
the 048 and the 2,1,10 reflexions were also incorporated 
into the starting set. 

In order to use a quartet relation to determine a new 
phase angle, three phase angles must be known. If 
these known phases are in error, a rapid propagation 
of errors is possible and is likely to be worse than the 
corresponding procedure that employs triplets, where 
only two known phases are required to generate a 

* Program~ Q(;EN (generation of quartets) and QLS (least- 
squares analysis) available on request. 

~212 (IE2121=205) 
Fig. 5. The variation of ~k (3"4) as a function of (P212. There are five 

contributors, d= 1.3, COmax=0"0014, Rh=0"004, IE2x~[=2.05. 

third. Whereas for triplets, phase-angle permutations 
of ___ n/4, _ 3n/4 (or 0, n, ___ n/2) may be sufficient (viz in- 
crements of n/2) for starting-set reflexions having 
general phases, this was found to be too coarse for use 
with quartets in space group P1 and increments of n/4 
from 0 to 7n/4 were used. Suitable multiple minima in 
~k for use in enantiomorph definition were not readily 
available in the early stages of least-squares analysis. 
Therefore, to define the enantiomorph and reduce the 
number of solutions to be investigated the value of the 
phase angle of reflexion 048 was constrained to the 
initial values n/4,n/2,3n/4. The phase of the 2,1,10 re- 
flexion was given eight possible initial values from zero 
to 7n/4 in increments of n/4. 

The necessity of defining three phases to give a 
fourth also gives difficulties in getting started in the 
phase-determination procedure. If quartets alone are 
used, a large starting set is often required. Relations 
between the starting-set phases quickly appear and 
hence reduce the number of possible solutions, but in 
a relatively time-consuming least-squares environment 
it is better to limit the starting set to the smallest 
compatible with a well-behaved phase-determining 
path. To this end, 109 unique triple-phase invariants 
having A > 5"0 were included in the analysis with an 
assumed cosine of + 1 and a variance derived from the 
Cochran (1955) distribution by (2.4). 

As with the least squares of triple-phase invariants, 
practical problems arise concerning the number of 
phases to be determined in a given cycle and whether 
these are to be held fixed once calculated. In the final 
successful procedure, 20 cycles of least-squares were 
performed initially for each starting set accepting only 
one new phase q~h having the largest value of Rh in that 
cycle. The minimum in 0 was found numerically by 
varying q~h in a coarse 30 ° grid from 0 to 330 ° and then 
stepping in 5 ° increments around the minima thus 
found. Two or more minima in 0 were assumed to 
exist if the corresponding values of ~k differed by less 
than 20%. A further 15 cycles were then carried out 
accepting the best 3, 5, 7,... phases in each subsequent 
cycle. Once determined, a new phase was not refined 
unless the new value Of Rh was greater than the previous 
value. A maximum shift of 70 ° of any phase in any cycle 
was imposed. At the end of each solution all the phases 
were refined together for one cycle. In contrast with a 
simple application of the tangent formula, such a 
procedure seemed to be stable for the compound 
studied. The cosine of the mode was used in (3.4). 
Similar studies with the mean or the median were un- 
successful. On an IBM 370/168 computer this method 
utilized ca 30 s of c.p.u, time per solution. E maps were 
produced directly from these phase sets without further 
refinement with the tangent formula. 

5. Selecting the correct solution 

The above method produced 24 possible solutions 
from which we wish to select the best set. The tradi- 
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tional figures of merit RKafle (Karle & Karle, 1966) and 
ABSFOM (Germain, Main & Woolfson, 1971) are 
unreliable in symmorphic space groups, being highly 
dependent on the ill-behaved tangent formula. Two 
alternative figures of merit were employed in the least- 
squares procedure: (i) Z Rh which is a measure of 

h 
consistency of the phase relations and should be a 
maximum for the correct solution; (ii) NQEST (De 
Titta, Edmonds, Langs & Hauptman, 1975), the nega- 
tive quartet figure of merit defined as: 

N Q E S T =  ~ (.Ohklm COS ((~0 h + (/Ok "91- q)l "]- (-Dm)/ ~ (-Dhklm 
hklm hklm 

(5.1) 

where the summations are taken over all those quartets 
predicted to have a modal value of re. The use of this 
formula for the centrosymmetric case has already been 
discussed (Gilmore, Hardy, MacNicol & Wilson, 1977) 
and the points raised there are equally valid in the non- 
centrosymmetric situation. 

With the existence of a reliable conditional joint 
probability distribution, it is possible to remove the 
arbitrary constraints imposed initially on the summa- 
tions in (5.1) by summing over all quartets having 
estimated cosines <0, setting O)hklm = 1/O'2klm and in- 
cluding no B limit. A theoretical value of NQEST 
(Ncalc) is then derived by substituting the quartet 
cosine estimates from (1.5) into (5.1). An observed value 
of NQEST (Nobs) can also be derived by substituting 
the calculated phase angles into (5.1) and summing 
over the same quartet invariants. A joint figure of 
merit is given by: 

N~ = ½(Nob~ + N ¢~,~). (5.2) 

The optimum value of Nc is -1 .0  where Nobs----- 
Neal¢ = - 1. Complete disagreement between the phas- 
ing path and quartet theory gives Nc = 0. 

These two figures of merit were computed for all 24 
solutions. The solution having N ~ = - 0 . 4 6  and 
ERh = 11.3 yielded an E map in which the positions of 
21 of the 31 non-hydrogen atoms were revealed. The 
structure was completed by weighted Fourier tech- 
niques (Sim, 1960) and refined to R=0.107. 

The two figures of merit and the unmodified 
NQEST showed a disappointing lack of discriminating 
power; indeed all the solutions were in the range of 
-0 .56 to -0 .42 for N and 11.3 to 11.9 for ~Rh. In 
view of the previous experiences of De Titta et al. (1975) 
this may seem surprising. However, as mentioned for 
the centrosymmetric case (Gilmore et al., 1977) 
previous successful applications of this figure of merit 
have not used the negative quartets for a priori 
phasing, but have utilized them passively at the end of 
the analysis as a figure of merit that is independent of 
the phase-determining procedure. This independence 
is lost when the quartets are used in an active way, and 
the reliability of the calculation reduced. However, it is 
anticipated that, when quartets are not used for a priori 

phasing, this modified formulation of NQEST will be 
both easier to calculate and more reliable. 

6. Application to space groups of higher symmetry 

Although the P 117 formula (1.5) was derived specifically 
for space group P1, it should be valid for conditions of 
higher symmetry (Giacovazzo, 1976b). Probabilistic 
formulae also exist for quartet invariants in the centro- 
symmetric case (Giacovazzo, 1976c; Hauptman, 1976). 
The least-squares technique can be applied to these 
situations in the same way. An additional acceptance 
criterion is required for reflexions having restricted 
phases, where it is necessary to ensure that the mini- 
mum in (3.4) is within a suitable distance of the relevant 
restriction. Those phases for which this is not so are 
poorly determined and should be rejected. 

In most cases of higher symmetry, the problem of 
symmorphism is not encountered, yet the tangent 
formula can still sometimes be unstable (Lessinger, 
1976). The least-squares technique then offers an alter- 
native which is more likely to be stable. In larger struc- 
tures there is often a paucity of reliable phase relations 
when triplets alone are used. The incorporation of 
quartets increases this number, and the least-squares 
analysis provides a flexible method of utilizing them 
as well as permitting the incorporation of any other 
invariant or seminvariant. We are currently exploring 
the use of this procedure in these cases in our labor- 
atory. 

The author thanks Dr H. Hauptman for useful dis- 
cussions, Dr A. F. Cameron for the intensity data for 
the compound studied, and Mr A. Freer who assisted 
in the computational procedures. 
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